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Abstract. Mackey’s scheme for the quantisation of classical momenta generating complete 
vector fields (complete momenta) is introduced, the differential operators corresponding to 
these momenta are introduced and discussed, and an isomorphism is shown to exist between 
the subclass of first-order self-adjoint differential operators, whose symmetric restrictions 
are essentially self-adjoint, and the complete classical momenta. Difficulties in the quan- 
tisation of incomplete momenta are discussed, and a critique given. Finally, in an attempt to 
relate the concept of completeness to measurability, concepts of classical and quantum 
global measurability are introduced, and shown to require completeness. These results 
afford strong physical insight into the nature of complete momenta, and lead us to suggest a 
quantisability condition based upon global measurability. 

1. Introduction 

Mackey (1963) has demonstrated that each classical momentum P associated with a 
complete vector field X on M generates a one-parameter group of transformations of 
M, which in turn generates a one-parameter group of unitary transformations U of the 
set L2(M)  of square-integrable functions on M. The quantisation scheme of Mackey 
amounts to the identification of the generator of U with the quantised momentum Q ( P )  
(Wan and Viazminsky 1977, 1979). Q ( P ) ,  being the generator of U, is automatically 
self-adjoint. Let us call a classical momentum P a complete momentum if the 
associated vector field X is complete. We then have a quantisation scheme for 
complete momenta. 

This is an important and general result, which nevertheless is far from encompassing 
the quantisation problem. Such an analysis requires the presence of each of the 
following elements: 

(i) the explicit determination of the existing unique quantum observable cor- 
responding to a complete momentum, 

(ii) the discussion of the quantisation of momenta which do not generate complete 
vector fields, 

(iii) an analysis of the dequantisation of quantum momenta, and 
(iv) the construction of a theory of measurement of the quantisable momenta, both 

in the classical and the quantum cases. 
This last is necessary if the theoretical construction is to be physically meaningful. 

This paper is the outcome of an attempt to construct such a self-contained general 
scheme of quantisation by seeking to answer as far as possible the foregoing questions, 
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and to explore the inter-relationships which obtain between them. Our analysis leads to 
the conclusion that the rather abstract and formal quantisation condition on P in 
Mackey's scheme does have a direct physical foundation, that is, the quantisability 
condition of P may be traced to its global measurability, a concept to be introduced and 
discussed in detail in the second half of this paper. 

2. The quantisation of momentum sbservables 

2.1. The quantisation of complete momenta 

Let the classical configuration space be an N-dimensional Riemannian manifold M 
with metric g". The phase space is then the cotangent bundle T*M with coor- 
dinatisation ( x i ,  pi), where p i  are generalised momenta conjugate to coordinates xi, We 
shall confine ourselves to classical momentum observables of the form P = e i ( x )  pi 
where ['(x) E C"(M). P is associated with the vector field X = t ' ( x )  a / a x i .  

A complete momentum is quantised according to 

Theorem 1. (Mackey 1963) On the quantisation of complete momenta: If P is a 
complete momentum observable, then the symmetric operator Qo(P) on the Hilbert 
space L2(M)  defined by 

Qo(P) = -ih(X + $ div X), 

DQo(P) = {$ E L2(M):  rl E C? ( M ) ,  Qo(P)$ E L2(M)) ,  

(1) 

(2) 

with domain 

where C: ( M )  denotes the class of infinitely differentiable functions of compact support 
on M, is essentially self-adjoint, and hence possesses a unique self-adjoint extension 
Q ( P )  (Varadarajan 1970, Hermann 1978, Abraham and Marsden 1978). Q ( P )  is 
postulated to be the quantum analogue of P. 

The explicit expression for the operators Q ( P )  is given by 

Theorem 2. (appendix 1) Explicit representation of Q ( P ) .  The operator Q ( P )  introduced 
in theorem 1 is given explicitly by 

Q ( P )  = -ih(Dx + div X), (3) 

DQ(P) = {$ E L2(M):  4 E C'(X, MI,  Q(P)$  E L2(M)) ,  (4) 

with domain 

where Dx is the Lie derivative with respect to X (Loomis and Sternberg 1968) and 
C'(X, M )  is the set of functions on M whose Lie derivative with respect to X exists. 

Expressions (3) and (4) may be given the following working interpretations: 

DQ(P) we have 
(i) If $ E C1(M), then D& =X$ = e'a$/ax'. Hence for a C'(M)  function $ in 

( 5 )  Q(P)$  = -ih(X ++ div X)$. 
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However, since $ E C’(X, M)+ r// E C ’ ( M ) ,  it is misleading in our present context to 
write 

D~ = x = &a/axi 
as the right-hand expression implicitly implies a domain of operation consisting of 
functions once-differentiable with respect to every coordinate x ’. 

(ii) In a coordinate chart x f i  in which X=a/ax”  we have $ E D Q ( P ) + $  is 
once-differentiable with respect to xfl, and 

(6) Q(P)$  = -ih(a/dx” +&(In g1’2)/ax”)$, 

where g = detlgijl in coordinates x f i .  
(iii) At critical points where X = 0 (Brickell and Clark 1970) we have Dx = 0. This 

means that at critical points the function $ as an element of L2(M)  need not be 
differentiable at all. 

As an illustration consider the case of the z component angular momentum P, in 
M = 8’. Its associated vector field is 

L, = xa/ay - ya/ax, 

x ,  y, z being the usual global Cartesian coordinates in $?’. L, is complete and hence 
possesses the quantum analogue 

Q(P,  = -ihDL,, 

with a domain given by (4). If E DQ(P,) and $ E C’(M), then 

Q(P,)$ = -ih(xa/ay - y a / a x ) $ .  

However, the widely used equality 

Q(P,)  = -ih(xa/ay - y a / a x )  

is incorrect, since DQ(P,) contains functions differentiable with respect to neither x nor 
y. ,The correct differential expression is given locally by 

0 at the origin 
.. 

Q(Pz)  = -ih a/a+ elsewhere 

where 4, the local azimuthal angle, corresponds to x ’ l  in (6). The origin is a critical 
point at which no restriction of differentiability of any kind is made on any $ E DQ(P,). 

The above results provide us with a scheme for quantising complete momenta. This 
quantisation scheme can be reversed because of the following: 

Theorem 3. On the dequantisation problem. The operator Qo(P) with domain 
DQo(P) as defined in theorem 1 is essentially self-adjoint iff all integral curves of X ,  
except possibly those originating from a set of measure zero in M, are complete 
(Abraham and Marsden 1978). Let {Q(P)}c denote the set of self-adjoint operators 
Q ( P )  = QA(P), where Qo(P) satisfy theorem 3, and let {P}c be the set of momenta 
complete except possibly on a set of measure zero in M. A bijection exists between {P}c 
and { Q ( P ) } ,  given by the operation of quantisation Q : { P } c + { Q ( P ) } c  and by the 
operation of dequantisation Q-’: {Q(P)} ,  + {P}c.  Thus the operations of quantisation 
and dequantisation give rise to difficulty only for incomplete momenta, that is momenta 
associated with incomplete vector fields. 
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2.2. The quantisation of incomplete momenta 

The question now arises: what are the quantum analogues of incomplete momenta? For 
an incomplete momentum P, theorems 1 and 3 imply that Qo(P) is not essentially 
self-adjoint. Hence either (1) Qo(P) has no self-adjoint extensions, which we interpret 
as meaning that Q ( P )  does not exist, or else (2) Qo(P) has many self-adjoint extensions, 
when the problem reduces to whether any, and if so which, extension is the quantum 
analogue Q ( P )  of P. We may shed light on case (2) above by considering an example of 
a momentum observable associated with a particle moving in the configuration space 
M = {x: x E (-1, 1)) with metric g = 1/(1 - x ~ ) ~ .  This configuration space constitutes a 
complete Riemannian manifold, (Bishop and Crittenden 1964), that is, every geodesic 
is infinitely extensible in both directions. This is physically important since in such a 
manifold a classical particle can execute free motion along a geodesic indefinitely. 
Hence we avoid the difficulty encountered by the usual model of an infinite square well 
in which even classical motion suffers abrupt discontinuities at the edges of the well. The 
completeness of the configuration space as a Riemannian manifold is of significance in 
quantum theory as seen in the following. 

Theorem 4. (appendix 2) The symmetric operator Qo(H) on L2(M)  defined by 

with domain 

DQo(H) = {+ E L2(M):  + E G' ( M ) ,  Q o W 4  E LZ(M)) ,  

is essentially self-adjoint if and only if the space M = {x: x E (a ,  6)) with metric g is a 
complete Riemannian manifold. 

The unique self-adjoint extension Q ( H )  of Qo(H) is the free quantum Hamiltonian 
corresponding to the free classical Hamiltonian H. The choice of the Laplacian 
operator to obtain Q ( H )  can be justified by the consideration of Wan and Viazminsky 
(1977) in the case of a space of constant curvature of which our present M is an 
example. The explicit expression for Q ( H )  is 

with domain 

DQ(H)  = {+ E L2(M):  I,!J E C 2 ( M ) ,  Q(H)(I/ E L2(M)}.  

We see that the completeness of M leads to the uniqueness of the quantum 
Hamiltonian Q ( H ) .  We have therefore a well-defined model with no ambiguity in 
Q(H) .  There is no need to employ boundary conditions to define the quantum 
Hamiltonian as is the case in the usual model of an infinite square well. 

Returning to our model with M = {x: x E (-1, l)}, g = 1/(1 - x ' ) ~ ,  we consider the 
momentum p x  associated with X = a/ax, that is p x  is the momentum conjugate to x. It is 
readily verified that p x  is incomplete and that Qo(px)  has uncountably many self-adjoint 
extensions Q,(p,)  given by 

Q p ( p x )  = -ih[d/dx +x / ( l  - x 2 ) ]  



Momentum observables 2677 

with domain 

where p E [0,27r) is a fixed constant. The spectrum of Qp(px) is discrete and non- 
degenerate with normalised eigenfunctions 

4 p . n  = --x 1) exp(-ik,x), n = 0 , * 1 , * 2  , . . . ,  2 1/2 

with eigenvalues 

fik, = $hp + n r h ,  

Since &,,& DQ,(p,), p # y, it follows that (&,nIQv(px)Iq5B,n) is undefined; physically 
this results in an infinite average value of Q,(p,) (Wan and Viazminsky 1977), and the 
assumption that Qp (px) and Q,(p,) are both observables corresponding to attributes of 
the physical system gives rise to an inconsistency. Hence at most one of the Qp(px) can 
be a system observable. It is difficult to justify the claim that a particular Q p ( p x )  is the 
true quantum analogue of p x ,  since there would seem to be no a priori criterion to decide 
among the various p E [0,27r).  It is, moreover, impossible to determine any particular 
choice of p by recourse to experiment, since the spectrum of Qp ( P )  may be arbitrarily 
well approximated by that of Qv(P) ,  y = p. Hence the experimental spectrum cannot 
single out Qp ( P )  a posteriori. 

We have demonstrated some of the difficulties arising from an attempt to quantise 
incomplete momenta. A fresh look at this problem from a fundamentally different 
viewpoint will be presented in the remainder of this paper. In passing we should 
mention that extensive discussions on the operator i d/dx and its self-adjoint extensions 
on L2(a, b )  are given by Akhiezer and Glazman (1966) and by Reed and Simon (1972, 
1975). 

3. The measurement of momenta 

3.1. Classical momentum measurement in Euclidean space 

Consider initially the simplest case of the measurement of the linear momentum p of a 
free particle moving in a one-dimensional Euclidean space M1=%, p being the 
momentum conjugate to a global Cartesian coordinate y .  A measurement of p 
necessarily involves a non-zero, though perhaps very small, displacement of the 
measured particle, as is sufficiently apparent from the definition of p ,  namely p = 
m limat+o ( y ( t  + A t )  - y( t ) ) /At ,  where y ( t )  is the particle trajectory as a function of the 
time t. In what follows we shall adopt the impulsive measurement model of Aharanov 
and Safko (1975).  We elect to measure the momentum of the above test particle by 
measuring the displacement of a particle of momentum p’  conjugate to its coordinate y ’  
with which it interacts in accordance with the Hamiltonian 

H = p 2 / 2 m  + p ’ 2 / 2 m ’ + w ( t ) p p ’ ,  ( 7 )  
where w ( t )  is given by 
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The equations of motion of the test and measuring particles are therefore 

y’ ( t ) -y ’ (0)  =p‘ t /m’+wtp .  

Taking the impulsive limit woT + y > 0 as T + 0, we deduce that 

AY = Y ( T ) -  Y (0)  = YP’ ,  

A y ’ =  y ’ (T)-y’ (O)= yp. 

Thus we see that, if the value of y characteristic of the interaction is known, then p is 
measurable in terms of the displacement (recoil) A y ’  of a reference particle. We note 
particularly that only the recoil A y ’  is required so that the position of the particle under 
test need not be known, provided only that the recoil is measurable. This analysis shows 
that (in this particular example) the momentum p may be measured in a manner 
independent of and without the knowledge of position. 

Suppose now the particle is confined to the configuration space M2 = (a ,  b ) .  We can 
employ the same measurement model (7)  inM2 to obtain (8)  and (9) provided y ( t ) ,  y’ ( t )  
lie in (a ,  b )  for t E (0, T ) .  This proviso drastically changes the fundamental nature of the 
measuring process. A given measuring device characterised by pre-fixed values of y 
and p ’  may no longer be used to measure p without a knowledge of y ,  that is if y is too 
near the boundary a, the value A y  may be so large as to violate the condition y E (a ,  b ) .  
Furthermore, for any fixed value of y a value of p exists such that Ay‘ exceeds the value 
b - a .  To sum up, we see that generally a p measurement causes uncertainties in y and 
y ’ .  Depending on the geometric property of the manifold M the uncertainties may be 
subject to certain position-dependent constraints, rendering a p measurement 
generally y dependent as well as y’ dependent. 

A similar situation obtains in 9” if Cartesian coordinates y I ,  y ”  and their conjugate 
momenta p i ,  p i  are considered. The interaction Hamiltonian is 

H = (1 /2m)vi ippj  +(1/”‘)7’’pIp; +w(t)qi ipip; ,  (10) 

where vii  = 8” is the Euclidean metric. The recoil displacements of the interacting 
particles are related to their momentum values by 

A y i  = ypi, Ay” = ypi. (11) 

3.2. Classical momentum measurement in Riemannian space 

The problem herein lies in the measurement of a general function P = Q’(2)pi on T*M, 
(fi, p i )  being a coordinatisation on T”M. In the neighbourhood of any point in M 
where Q’ # 0 coordinates x i  exists such that P = p l ,  the momentum conjugate to xl. 
Hence P is just a simple momentum variable which can be ascertained without having to 
measure canonical variables Zi,  pi simultaneously. From now on it is sufficient to 
consider the measurement of a momentum p1 conjugate to a coordinate xl. For 
simplicity we shall assume x 1  to be a global coordinate. 

The model measuring process is a kind of collision between two free particles, one 
the test particle described by undashed quantities, the other the reference (measuring) 
particle described by dashed quantities; the measured parameter is the reference 
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particle recoil. As the total Hamiltonian describing the collision, we elect the natural 
extension of ( 7 )  and ( l o ) ,  namely 

H = (1/2m)gi’(x)pipi +(1/2m’)gi i (x’)p:p:  +o( t )g“’ (x ,  x ’ )p ip i ,  (12)  
where g”’(x,  x ’ )  is the parallel propagator (Synge 1971). The parallel propagator 
introduced by Synge may not be unique. However, this will not affect our following 
analysis which involves only local properties of g“’ .  The solution of Hamilton’s 
equations of motion generated by (12)  for the global trajectories of the particles would, 
in general, prove a formidable task. Fortunately it is sufficient for our purposes to 
consider the local motion in the neighbourhood of the collision in terms of the Cartesian 
coordinates y b  about some neighbouring fixed point mo. The equations of trans- 
formation connecting the coordinate systems are (Synge and Schild 1966) 

y b  = bj(x’ - a ’ ) ,  

where 6 ;  is a matrix of constants and the point mo has coordinates x i  = a’. It is, 
moreover, possible to elect bj such that (appendix 3 )  

( 1 3 )  

(14)  
where p ?  and p io  are momenta conjugate to y b  and ybi respectively. The equations of 
transformation ( 1 3 )  yield simply p1 = b:p?. Hamilton’s equations of motion yield, by 
(14) ,  A y ;  = yp?, whence, provided the reference particle is so aligned that pio  = 0, i # 1 ,  
we may deduce the equation connecting p1 and the measured displacement Ay“  as 

1 1 1  1 y o = b l ( x  - a  ). 

In terms of these coordinates the Hamiltonian (12)  becomes 
ij I O  I O  ii 0 IO H = (1/2m)vi’p?p’pp + ( 1 / 2 m ’ ) ~ 7  p i  pi + w ( t ) q  p i p i  , 

PI = b:  Ayb’ly. ( 1 5 )  
All other coordinate displacements Ay’,  j # 1 ,  are zero. 

We have now established a local measurement procedure for pl.  Our aim is to set up 
a position-independent measuring process. We shall introduce a notion of global 
measurability to achieve this goal. 

3.3. Global measurability, completeness and quantisability 

In order not to obscure various arguments by mathematical technicalities, let us 
consider the generalised momentum P conjugate to an arbitrary global coordinate x in 
the one-dimensional Euclidean manifold M = B. In terms of a Cartesian coordinate y 
we have P = [ ( y ) p ,  where p is the momentum conjugate to y and [ = dy/dx # 0 (to be 
definite we assume [ ( y )  > OV y E 9). We now apply the model measuring process 
discussed in the preceding section to measure P. The simplicity of our present case 
enables us to see clearly the nature of the approximation involved. Our model 
measuring process as embodied in (13) ,  (14) ,  (15) amounts to (i) a straightforward 
measurement of p and (ii) the approximation of P = [ ( y ) p  by P = [ (yo)p .  The approx- 
imation may be made arbitrarily accurate since we can choose y and p ’  to produce very 
small recoil Ay, In other words, we do have a perfectly valid measuring process for P. 

There is, however, a serious problem caused by the local nature of the measuring 
process. In our model the measuring device is the reference particle (locally charac- 
terised by its momentum p ‘  conjugate to its locally Cartesian coordinate y ’ )  which 
would interact with the measured particle with a certain fixed value of y. Our measuring 



2680 K-K Wan and K McFarlane 

device is a local system and only its local properties are relevant. Let us call two 
measuring devices sited in the neighbourhoods of two different points m l ,  m2 in M 
identical if their respective local properties at m l ,  m2 are the same, i.e. they possess the 
same values of p ’  and y. Now recall that our aim is to set up a basically position- 
independent measuring process for P. But the local nature of our measuring process 
and measuring device seems to go against that. This turns out to be only an apparent 
paradox as seen in the following detailed analysis. At the outset let us agree that by a 
position-independent measuring process for P we mean the possibility of measuring P 
with a pre-elected accuracy using identical measuring devices independent of where the 
particle is in M. We can now investigate this possibility. Firstly, identical measuring 
devices will produce a common recoil A y  independent of where the particle is, that is, 
independent of y .  So the problem reduces to the investigation of error caused by 
replacing [ ( y )  by [ ( y o )  where y E ( y o ,  y o +  A y ) .  This error may be characterised by the 
standard deviation A,t0 of [ as a function of y over the interval ( y o ,  y o  + A y )  defined by 
(see for example Peslak 1979) 

If A,to is bounded for every y o ~ 3  ( A y  being constant), then we have a position- 
independent measuring process for P, so that a common measuring device can measure 
P to within a common tolerance, supremum ( (A, [ )p) ,  for any fixed Cartesian momen- 
tum p ,  independent of the position of the particle. Obviously the possibility of achieving 
this depends on the nature of P, that is the property of [ ( y ) .  Let us call a momentum 
variable P globally measurable if for P the above position-independent measuring 
process applies. The significance of global measurability of P is seen in theorem 5, 
whose somewhat intricate proof is given in appendix 4. 

Theorem 5. on completeness and global measurability of p .  
(i) Let y,, = n A y ,  where A y  > 0 is a fixed number and n = ztl, *2, . . . , be a sequence 

of points on 3. Let X = [ ( y )  d/dy, [ ( y )  > 0, be an incomplete vector field on 3. Then 
- 
lim A,[,, = 00, 

where Tim denotes the limit superior as n + +-CO or --CO. 

(ii) A momentum P = [ p ,  [ # 0, is globally measurable only if it is complete. 

An incomplete momentum is hence not globally measurable since the uncertainty 
A.,& is unbounded. This is then the intrinsic measurement-theoretic significance of a 
complete momentum. Since completeness of P is the quantisability condition of P we 
have succeeded in tracing this abstract mathematical condition to its physical origin, 
that is, the quantisability of P is intrinsically related to the global measurability of P. A 
momentum P is quantisable if it is globally measurable, that is if P is measurable in a 
position-independent manner. This result is pleasing especially in view of the fact that 
the concept of global measurability may be carried over into quantum theory, a result 
which we shall demonstrate in the following section. 

3.4. Quantum global measurability 

The basic impulsive measurement model applies in quantum theory according to 
Aharanov and Safko (1975). With a parallel analysis one may expect to obtain similar 
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results. However we shall adopt a more general approach based on the uncertainty 
principle. We shall consider a momentum P = [ ( y )p ,  [ ( y )  > 0 in B, y being a global 
Cartesian coordinate. Firstly we introduce the concept of quantum global measurabil- 
ity. Let y ,  = n A y ,  A y  being fixed. Let E be a fixed positive number much less than A y .  
Let ( E , - ,  E , + )  be any interval in ( Y , , - ~ ,  Y , + ~ )  with E,+ - E,- = E .  Furthermore let a,, be a 
set of localised wavefunctions given by a,, = {4 E Lz(R)  nDQ(P):  
( e n - ,  E ~ + ) C S U P P ( ~ ) C  ( ~ n - 1 ,  Y ~ + I > ,  (4 I4>= 11, and let ASQ(P)+, =[(4nIQ(P)214n) 
- (~n IQ(P)1~ , )2 ]1 '2 ,  4, E a,. A quantised observable Q ( P )  is said to be globally 
measurable if the sequence of uncertainties A,Q(P)+,, (with respect to a chosen 
sequence of wavefunctions 4, E a,) is bounded. We shall now establish a link between 
completeness and the global measurability of Q(P).  From the general uncertainty 
principle we have 

A,Q(P)A,y 3 %l(t)l 
for a quantum momentum of the form 

Q ( P )  = -ih(X + 2 div X), 

where X = t ( y )  d/dy and [ ( y )  > 0. For a localised wavefunction we have A,y s A y .  It is 
not too difficult then to establish 

Theorem 6. (appendix 5 )  On completeness and global measurability of Q(P).  Q(P) ,  
P = [ p ,  [ # O ,  is globally measurable only if P is complete. The close link between 
completeness of P and the global measurability of P and Q ( P )  is now seen. Here we 
also unearth a fundamental cause of trouble associated with the quantisation of 
incomplete momenta, that is, in addition to the ambiguity in the choice of its quantum 
counterpart we have also that any quantum counterpart chosen is not globally measur- 
able. 

It is worth pointing out here that the concept of global measurability is in keeping 
with the notion that space is locally the same everywhere and is indistinguishable by 
local measurements. 

3.5. Generalisation to higher dimensional manifolds 

Our analysis in the previous two sections has been performed in a one-dimensional 
manifold in order to explain the ideas involved without excessive mathematical 
complication. The analysis can be readily extended to higher dimensional manifolds in 
view of the following: 

Theorem 7. (appendix 6 )  Let X be an incomplete vector field without a critical point in 
a complete Riemannian manifold M. There exists an integral curve vo(t) of X from 
some point mo = ~ ( 0 )  E M  such that 

(i) vo(t) is neither closed nor has end points, 
(ii) vo(t) is isometric to B, 
(iii) there is an open covering of vo(i) where coordinates x i  exist in terms of which 

we have x1 E (-CO, a), gij = Sii and X = [(x')a/ax'. 
Here x 1  is really the signed metric distance along v0 with x 1  = 0 at mo, x l (c ro ( t ) )  > 0 for 
t > 0 and x l ( a o ( t ) )  < 0 for t < 0. Hence x 1  can serve as a local Cartesian coordinate with 
origin at mo. We see that the problem reduces to a one-dimensional problem along the 
coordinate xl. Consequently results identical to those embodied in theorem 5 part (ii) 
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and theorem 6 are obtained with reasonable facility, global measurability being 
interpreted as the existence of a supremum of AP,, (i.e. (As[& or AsQ(P),,) for each 
integral curve uo of the vector field. It should be noted that we do not require the 
existence of an upper bound (for fixed Ay, say) of the suprema of AP, for all integral 
curves. For this much stronger statement, while still admitting the above theorems, 
needlessly excludes many complete momenta from the measurable class. 

4. Conclusion 

The analyses of the foregoing sections have identified two severe difficulties associated 
with the retention of incomplete momenta as quantisable objects: 

(i) The absence of any uniquely and explicitly known general procedure for their 
quantisation, and the difficulty in distinguishing various choices of Q(P) by measure- 
ment of their eigenvalue spectra. 

(ii) Their global immeasurability, especially quantum mechanically. These two 
factors respectively reflect upon complementary aspects of the process of subjecting the 
theory to experimental test. It should be pointed out that the objections raised against 
incomplete momenta are based on their global properties. We do not claim that they 
have no local meaning; indeed it may be that they are very useful in discussing local 
physical effects. It remains true, however, that the behaviour of a quantum momentum 
observable is decisively influenced by the global character of the space so that a fully 
meaningful observable must be well-defined in a global sense. 

In view of what has been said we are tempted to put forward the following physical 
quantisability axiom: A momentum P is quantisable iff P is globally measurable 
(classically or quantum mechanically). Obviously this assertion is closely related to 
Mackey’s quantisability condition. However, with the existing formulation of global 
measurability, this new quantisability axiom is more restrictive than that based upon 
completeness. But we do nevertheless feel that further work along this line on the 
relationship between quantisability and measurability with an aim of establishing a 
physical quantisability axiom based on a concept of global measurability would be 
highly fruitful, and we hope to be able to report new results in the near future. 
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Appendix 1. Theorem 2 on the explicit representation of Q ( P )  

Assume initially that the vector field X has no critical points, and denote QdP) and 
Q i ( P )  by Qo and Q A  respectively, Introduce the auxiliary operator Q,(P)  = QI by 

(Al . l )  

(A1.2) 

Then since Qo is essentially self adjoint, and Q1 is symmetric, Q A  = Q: = Q, so that it 
suffices to find the adjoint of Q1. 

Q1 = -ih(Dx + 1 div X ) ,  

DQ1 ={((I EL’(M)IJ/ E CA (X, MI,  QirL E L’W)). 
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For each $ EDQ: let [ and 77 be two scalar functions (possibly complex) on M 

div qX = $A$ div X .  (A1.3) 

Let 4 E DQ1 be a function of compact support in M; the divergence theorem then gives 

(A1.4) 

Moreover (t$lQ:$) = (Q141$) = +ih(Xq5l$)+(c$I div [ X ) ,  and hence, combining 
(A1.3) and (A1.4) we have 

satisfying 

div [X = a:$, 

(4 I div 5X) = -(ad I[), (91 div 77m= -(D&177). 

(D&l(+ih$+[-r]))=O. 

Now in a coordinate system in which X =a/&', proposition A l . l  given at the end of 
this appendix implies that 

(A1.5) 

Moreover equations (A1.3) may be solved explicitly for 77 and [, giving, upon substitu- 
tion into (A1.5) 

ih$ = 77 -[ + r(x', . . . , x")/g'/'. 

+ih x 1  1 *l  

2g g 
ih$ = I $(div X)g'/' dx'-= I (Q:$)g''* dx'+ f ( x ' ,  . . . , xn)/g1/', 

whence $ is absolutely continuous with respect to x '  and 

(A1.6) 

j Q A  = Q: = -ih(Dx +f div X), 
DQA = DQ: = {$ E L'(M): $ E C'(X,  M ) ,  QA$ E L'(M)}. (A1.7) 

Finally suppose that X possesses critical points, and let N denote the set of these; 
then, if N is of non-zero measure, we may show explicitly (by considering 4 E 

CA(X, N ) c D Q 1 )  that Q:$ = 0 at every point in N, so that equations (A1.3) are 
consistent, Moreover (A1.3) cannot restrict the values of 77 or [ at the points of N, so 
that ( A 1 3  is no longer valid in N, but it nevertheless remains so at the points of M - N, 
so that the final result (A1.7) remains true. 

Proposition A l .  1. 

($ID&) = 0 Vq6 E C," ( M )  j $ E C'(X, M) and Dx($g'") = 0. 

Proof. Let U, be an open covering of M with the property that in each open set U, 
where X # 0, a local chart x i  exists such that X = a/ax' in U,. This is possible as U, can 
be chosen sufficiently small, Let C,"(U,) be a restriction of C,"(M) to U,, i.e. 
f E C: (U,)@f E C," (M) and supp f c U,. Consider the equation (r(llDxf) = 0, f~ 
C," ( U,). Explicitly we have 

(A1.8) 

These equations may be regarded as equations in the Hilbert space L'( U,). In other 
words we can define an operator D g )  = a/ax' in L'( U,) with domain C," ( U,). Let $("' 

be the restriction of $ to U,, i.e. $(a) = $(m)  for every m E U, and = 0 for every 
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m ii U,. Then (A1.8) implies that regarded as an element of L2( U"), belongs to the 
domain of the adjoint of Dg). A simple extension of the result of Wan and Viazminsky 
shows that $'"'E C'(X,  U"). Then C?(U,) being dense in L2(V,) implies 
8($'"'g'/2)/ax' = Dg)($(")g"*) = 0 in U,. If X has no critical points then this 
conclusion may be extended to the entire M to obtain the final result. 

The result remains valid even if X has critical points since Dx = 0 at critical points. 

Appendix 2. Proof of theorem 4 

Effect a coordinate transformation from x to y in general by y = j:o g1l2 dx, x o ,  x E (a, b )  
and in particular for M = (-1, l ) ,  g = (1 -x2)-'  by y = -bln[(l -x) / ( l  + x ) ] .  Then 
y E (-CO, m) and in terms of y the metric is 1. This shows that the configuration space is 
simply the Euclidean space 8 and that 

A related theorem applicable to a general Riemannian manifold is available in 
Abraham and Marsden (1978). 

Appendix 3 

Given arbitrary coordinates x i  we can introduce a normal coordinate system 2' (Synge 
and Schild 1966) such that 

2' =XI, gii dx' dx' = Ell d i '  d i '  +Ers di', di?, r , s # 1 .  

Furthermore 

81 = (ax'/af')pi = p i .  

y :  = 6: (2' - U ' )  = b : ( x ' - u ) .  

For local Cartesian coordinates y i  we can choose to have 

Appendix 4. Theorem 5 on completeness and global measurability of classical P 

We present a sequence of propositions leading to theorem 5 ,  and employ the following 
notation: 

Let F ( y )  > 0 be a continuous function on 9, and let {y,} be the sequence described in 
theorem 5 .  Let b, G, lim denote the limit inferior, limit superior, and usual limit 
respectively. 
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We employ the following known results: 
(i) Every limit point of a sequence {U,,} may be regarded as a limit point of a 

suitably chosen subsequence {U,,} of {U,} (Knopp 1928). The convergence of 2,  U, 
implies that 

(ii) lim U ,  = 0 (Widder 1961), 
(iii) if U,, > 0 and u,+~ d U,,, then lim nu,, = 0 (Bromwich 1908), and 
(iv) if U,, > 0 and lim u,/u,,+: = 1, then lim n(u,/u,+l - 1) 3 1 (Bromwich 1908). 

Proposition A4.1. Let f,, the local mean over [y,, Y , + ~ ]  of F(y) ,  be defined by 

then 
.m 

J F ( y )  dy <CO =$ !ig nf,, = 0. 
0 

Proof. Noting (ii), construct a subsequence of { f , }  for which (iii) applies. 

Proposition A5.2. Let fk, the local reciprocal mean, be defined by 

Proof. Employ the Schwarz inequality (Widder 1961) to demonstrate that f ;  cf,, when 
this proposition is immediately corollary to A4.1, 

Proposition A4.3. Let S,, = A y / ( f i i l  -f i l ) ,  where f,, is as above; then jr F ( y )  dy <CO 

implies that {a,} has 0 as a limit point. 
This proposition remains true if f,, is replaced by f ;  in the statement. 

Pro0 f .  

and lim nf,, = 0. 
We may distinguish three cases: 

(i) lim fn/f,,+l = A # 1, when clearly lim S,, = 0, 
(ii) limfn/fn+l = 1, when we consider a subsequence {f,,,} of { f , }  as selected in the 

proof of proposition A4.1 and apply (iv), 
(iii) f n /  f n + l  oscillates indefinitely, when we may construct suitable subsequences to 

demonstrate the result. 
We now introduce the concept of local standard deviation A.& of a function [(y) on 93 
over the interval [a, b ]  defined by (see, say, Peslak 1979), 
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We then have the following propositions: 

Proposition A4.4. 

where 
(AS[)' 3 i(f+ - f-)', 
- 2 "  5-=- 

b-a  5dy' 

and c = i (b  +a) .  

Proof. Introduce 

then by direct calculation (As[')' = i(f+ - f-)', and from the Schwarz inequality (As[)2 3 
(As[')' 2 0. 

Theorem A4.1. Let [(y) > 0 be a continuous function on % and let 
1 y,+1 

(As&)'=-I (t-fn)'dy, 
2AY Y,-1 

Then 

Proof. Let 

The sequence 8;-1 = A ~ / [ ( l / f A ) - ( l / f ~ . - ~ ) ]  = Ay/(fn+-ffl-) has zero as a limit point if 
j ,"F(y)  dy <CO by proposition A4.3, that is the sequence (&+-in-) has a as a limit 
point. The proposition A4.4 implies lim As[,, = a. 

Theorem A4.2. 
Let X = [(y) d/dy, [ ( y )  > 0 be an incomplete vector field on 3. Then 

- 
lim As[,, = a 

where As[,, is as defined in theorem A4.1. 

Proof. A direct consequence of theorem A4.1 and proposition A4.3. 

Appendix 5. Theorem 6 on completeness and global measurability of Q(P) 

Let AsQ(P)4, be the uncertainty with respect to a normalised wavefunction 4,, E 

localised in the interval ( ~ ~ - 1 ,  y, ,+~).  
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Q(P) being globally measurable implies that the sequence l;;_+: 6 dy must be bounded, 
since J;;_+: 5 dy is the supremum of (t), over all such localised wavefunctions #, in 
(Y, -~ ,  y n + d .  This implies that {&}, {&+}, {&} (introduced in the proof of theorem 
A4.1) are bounded and that P is complete (see proposition A4.3 and the proof of 
theorem A4.1). 

Appendix 6. Theorem 7 

Proposition A6.1. There exists a aO(t) as described in theorem 6 which is neither closed 
nor has end points. 

Proof. If every maximal integral curve of X is closed X must be complete. For an 
incomplete X ,  a aO(f )  exists which is not closed. Such a ao(t) cannot have end points 
either, otherwise it would contradict the result that at every point on the curve, ao(t) 
may be regarded locally as a coordinate curve (Brickell and Clark 1970). 

Proposition A7.2. cro(t) contains its limit points. 

Proof. Use the result that cro(t) is locally a coordinate curve. 

Proposition A 7.3. Let S ( t )  denote the metric distance along the curve aO(f )  described in 
theorem 7 between the point mo = ao(0) and m = ao(t), t > 0, and let (a ,  b )  be the 
domain of ao(t). Then S(t)+co as t+ b. 

Proof. Let d ( m l ,  m2) be the metric distance between the points ml =ao(tl) and 
m2 = aO(f2) in the sense of Choquet-Bruhat et a1 (1977). Let t, > 0 be a sequence 
converging to b. Now, suppose the corresponding sequence S(t,) converges to a value 
S(b)<co. Then S( t , , )  is necessarily a Cauchy sequence, i.e. l S ( t , ) - S ( t , , ) [ + O  as n, 
n'+co. Consequently the sequence m, = ao(t,) is Cauchy since lS( t , ) -S( t , , ) l  2 
d(m,, m,,)sO. Since our manifold M is assumed to be proper and complete the 
Hopf-Rinow theorem (Choquet-Bruhat et a1 1977) operates. The sequence m, 
converges to a point mb E M  as t, + b. Proposition A6.2 means that mb must be a point 
on the curve ao(t). On the other hand mb must also be an end point of aO( f ) .  These 
contradict proposition A6.1. Hence the premise S(b )  < CO is false. 
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